Selective Attention for Handwritten Digit Recognition
نویسنده
چکیده
Completely parallel object recognition is NP-complete. Achieving a recognizer with feasible complexity requires a compromise between parallel and sequential processing where a system selectively focuses on parts of a given image, one after another. Successive fixations are generated to sample the image and these samples are processed and abstracted to generate a temporal context in which results are integrated over time. A computational model based on a partially recurrent feedforward network is proposed and made credible by testing on the real-world problem of recognition of handwritten digits with encouraging results.
منابع مشابه
Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملA Selective Attention-Based Method for Visual Pattern Recognition with Application to Handwritten Digit Recognition and Face Recognition
ÐParallel pattern recognition requires great computational resources; it is NP-complete. From an engineering point of view it is desirable to achieve good performance with limited resources. For this purpose, we develop a serial model for visual pattern recognition based on the primate selective attention mechanism. The idea in selective attention is that not all parts of an image give us infor...
متن کاملState of The Art in Handwritten Digit Recognition
State of The Art in Handwritten Digit Recognition Pooja Agrawal Department of Computer Science, SVITS, Indore, Madhya Pradesh, INDIA Prof. Anand Rajavat Department of Computer Science, SVITS, Indore, Madhya Pradesh, INDIA RGPV/SVITS Indore Sanwer Road, Gram Baroli, Alwasa, Indore, Madhya Pradesh, INDIA ______________________________________________________________________________________ Abstra...
متن کاملTwin Minimax Probability Machine for Handwritten Digit Recognition
Handwritten digit recognition is a task of great importance in many applications. There are different challenges faced while attempting to solve this problem. It has drawn much attention from the field of machine learning and pattern recognition. Minimax probability machine (MPM) is a novel method in machine learning and data mining. In this paper, we present an extension algorithm for MPM, whi...
متن کاملImproved Method of Handwritten Digit Recognition
MNIST database serves for comparison of different methods of handwritten digit recognition. There are many data related to different classifier recognition rates among which our neural classifier had the second place [1] (recognition rate 99.21%). At present we develop improvements of neural network structure and algorithms of handwritten digit recognition. Improved classifier has recognition r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995